
Creating the DXLab Suite - a Free, Interoperating Array of Applications for
the DXer

Dave Bernstein, AA6YQ

2002-09-12

If you're interested in DXing, and believe that better software would improve your
performance and enjoyment, then I'd like to introduce you to the DXLab Suite of
free, interoperating applications and the collaborative process that is driving it
forward. While I've been designing digital hardware and software since the late
1960's, I didn't get my ham license until 1990. At that point, two things happened
in very quick succession: I caught the DXing bug, and I began writing software in
support of my radio activities. What started as a simple PacketCluster monitor
grew over the years to include Icom transceiver control, logging, award tracking,
QSL card printing, beam heading computation and rotator control, propagation
forecasting, and QSL route searching.

This functional conglomeration, which I called DXLab, was a very effective DXing
accomplice -- I could analyze the operating habits of DX stations I was chasing,
correlate those habits to both primary and secondary band openings from my
QTH, and QSY to a spotted DX station's frequency in one mouse-click, getting
the needed QSO crucial seconds before the spot-chasing hoards arrived. There
were two significant problems, however. While placing all of the functionality in
one program made it easy to "integrate" these functions -- e.g. click on a DX spot
plotted on the world map and QSY the transceiver to the appropriate frequency
and mode -- the time required to build and test the program after adding a new
feature was becoming problematic. Furthermore, the program was far too
complicated for anyone else to install, much less understand or use. Visitors to
my shack would marvel at DXLab’s capabilities, but evolving this monolith into
something usable by anyone but its author seemed impossible.

Early in 1999, Tony, N2SS posted a message on an Icom reflector asking for
help in getting his 781 transceiver to interoperate with his PW-1 amplifier. In
Icom's design, the PW-1 determines the transmitter's frequency by monitoring
commands sent on the CI-V bus; this bus was originally designed to permit
multiple radios to transceive in a master-slave relationship, and then extended to
support Personal Computer (PC) control. Tony's 781 and PW-1 just weren't
communicating, and it wasn't obvious why. It occurred to me that I could quickly
assemble a CI-V bus monitor by using "parts" from DXLab's transceiver control
function. The notion of organizing software into components that can easily be
re-used from one application to another is one of modern software engineering
holy grails; this was a trivial example. The result was a standalone application I
called CI-V Explorer. It enabled Tony to find the blown fuse in his 781 that
prevented the PW-1 from responding to his transceiver's CI-V messages, and it
taught me the basics of packaging an application for installation by amateurs.

I made CI-V Explorer available for downloading from my personal web site. Not
many hams want to watch CI-V messages flow between their PC and
transceiver, even if they have the choice of doing so in decimal or hexadecimal.
None-the-less, the primitive search engines of that era made CI-V Explorer
visible to a few diehards; their appreciation and encouragement was nearly as
addictive as DXing. Not too long thereafter, the continuous "what's the QSL route
for X?" messages on the various DXing reflectors and newsgroups led me to
extract more code from DXLab and create a specialized web browser called
Pathfinder. There were plenty of web sites with QSL information -- Buckmaster,
QRZ, RW1QM, OZ1C, K4UTE, etc. While it was easy to add these to your
browser's Favorites, navigating to each and then re-entering the callsign was
painful and time-consuming. There were also an increasing number of online
callbooks for various DXCC entities; in all, I located more than 100 different web-
accessible sources of QSL information. Pathfinder lets you enter a callsign just
once; it determines the DXCC entity for the callsign, and gives you a button to
click that searches the appropriate online callbook for that entity. Twelve
additional buttons can be associated with your favorite online QSL sources,
allowing rapid searching of the web, and more recently the Radio Amateur's
Callbook CDROM. Around this time, I was fortunate to meet Fab, IK4VYX, the
author of DXTelnet. Fab helped refine my understanding of packaging software
for web distribution, resulting in the beta release of Pathfinder 1.0 in August of
1999 to a group of 20 or so beta testers. I was also fortunate to discover the
http://www.qsl.net site hosted by Al, K3TKJ, who graciously provided a web site
from which Pathfinder could be distributed; without his support, neither Pathfinder
nor any subsequent DXLab application would have ever seen the light of day.

Chasing down QSL information is a lot more interesting than watching CI-V
messages go by, and lots of hams responded to my post seeking beta testers.
No offense to the team, but I was not selective in assembling this group --
anyone who volunteered and had a reasonable PC running Windows 9X or NT
was accepted. While this might seem foolhardy, it was extraordinarily effective --
the broad range of skills, backgrounds, and expectations forced me to optimize
Pathfinder for ease-of-installation and ease-of-use. The term "intuitive user
interface" graces the data sheets of most modern software applications, but I
evolved a specific definition for this phrase: most hams should be able to use
Pathfinder by simply running it, with little or no reference to any online
documentation. While there are many aspects of this approach, two stand out:
there are no menus, but there are meaningful tooltips for every control. Unless
you're building a word processor, Microsoft's standard File Edit View Insert
Format Tools Window Help menu structure is a poor match for most amateur
radio applications. One must either shoehorn ham commands into this structure,
or invent a new structure; either way, users are left to grope through the maze,
hoping to remember how to change the RTTY baud rate to 50 before the pileup
arrives. To avoid this, all capabilities are directly accessible via command
buttons, check boxes, sliders, grids, and other visual controls Tooltips are
Microsoft's name for a conveniently accessible documentation mechanism: let

the mouse cursor hover momentarily over a control, and text describing the
control's function pops up. Every control of every DXLab application should have
a meaningful tooltip; yes, tooltips can be disabled en masse once you become
familiar with an application. If the required controls can’t fit in a window of
reasonable size or would result in too complex a panel, tabbed dialog boxes let
the user choose from a small, obvious set of activities, e.g. DXKeeper’s Log
QSOs, QSL, Check Progress, my QTHs, Import, and Export tabs.

After a rocky start, I established the infrastructure required to track incoming
defect reports and enhancements; I created web pages for each of these, so that
the user community could see what was going on and comment or critique as
they deemed appropriate. These mechanisms are still in use -- you can visit
Pathfinder's version history, defect log, and enhancement log online at
http://www.dxlabsuite.com/pathfinder. Most interaction was accomplished with
email messages, typically copying everyone who was working with the
application.

Pathfinder proved that I could extract functionality from DXLab and make it
broadly available, but the next advance came from an entirely different direction.
Peter, G3PLX had developed the PSK31 protocol; he'd also developed
PSK31SBW, a Windows application that together with a soundcard performed
PSK31 modulation and demodulation. I was excited by the potential of this new
mode, and began thinking about how to add support for it to DXLab, with
appropriate interaction with the transceiver control and logging functions. Peter
and I discussed the creation of a PSK engine with programmatic interfaces that
could be used by many different applications; such interfaces would allow me to
add PSK support to DXLab without re-inventing the DSP wheels required for
modulation, demodulation, and soundcard interfacing. When I discovered that
Moe, AE4JY had constructed such an engine -- PSKCORE -- I was off to the
races. At first, my rationale for building a standalone PSK implementation using
PSKCORE was simple -- the process of building it inside DXLab would be too
slow and cumbersome; better to get it working separately first, and then integrate
it. However, my experience with Pathfinder led me to believe that an easy-to-
install, easy-to-use PSK application would be of interest to lots of hams. At the
time, PSKCORE's ability to simultaneously decode multiple PSK QSOs was
unexploited; I believed that PSK DXers would find this capability particularly
useful.

The fly in the ointment was integration. If I were to construct a standalone PSK
application, how would it perform transceiver control? How would it perform
logging and award tracking? It might start out as a standalone application, but
eventually, I'd have to add most of the functionality already present in DXLab.
The only thing worse than one monster application is two of them! Fortunately,
there was another approach: instead of one big program that does everything but
becomes increasingly un-installable, un-usable and un-maintainable, design a

system of individual, specialized applications that detect each other's presence
and interoperate automatically.

Microsoft Windows provides mechanisms that allow applications to communicate
by sending messages to each other. There are actually several such
mechanisms; I chose one called Dynamic Data Exchange (DDE). Using DDE, a
PSK application can obtain the current transceiver frequency from the rig control
application, or direct it to QSY the transceiver so that the current signal is
centered in the receiver passband. The PSK application can send QSO
information to the logging program, and send a received callsign to Pathfinder to
find a QSL route. A constellation of applications can do everything that one big
monolithic application does, but with several fundamental advantages:

• A user can start with whatever application suits his or her fancy, master it,
and then add additional applications in whatever order seems appropriate

• development of individual applications can be more nimble and responsive
to user feedback

• unique hardware devices -- e.g. the transceiver, the antenna rotator, the
soundcard -- are accessible to multiple "client" applications
simultaneously, including applications constructed by other developers

This revelation led me to a new mission: the construction of a system of
interoperating applications that automate DXing activities as did the monolithic
DXLab, with no reduction in integration among functions; this system is the
DXLab Suite. The PSK application became WinWarbler, and was later extended
with Mako, JE3HHT's MMTTY engine to support RTTY with a common user
interface for both modes; with an outboard RTTY modem, WinWarbler can
decode two RTTY signals simultaneously. CI-V Explorer became
Commander, which provides a common user interface and DDE "server" for
Kenwood, TenTec, and Yaesu as well as Icom radios. DXView was assembled to
perform callsign lookups into a DXCC database, control the antenna rotator, and
plot the resultant information on a world map along with beam headings and the
real-time solar terminator position. As the original DXLab's logging functions were
built on an earlier generation of database technology, I chose to build DXKeeper
from scratch around Microsoft's Jet database engine, the same engine that
underlies Microsoft Access; DXKeeper exploits this engine to provide powerful,
yet easy-to-use filtering of one's log to show some specific set of QSOs, e.g. "all
QSOs with VK9NS" or "any QSOs that started within an hour of 23-Jul-2001 @
1410Z". DXKeeper retained its predecessor's ability to track award progress,
identify the QSOs for which QSLs were required, and generate the necessary
QSL cards or labels; it supports multiple logs, multiple operator callsigns, and
operation from multiple QTHs. SpotCollector similarly exploits the Jet engine to
create and maintain a local database containing merged DX spots and
solar/geomagnetic parameters from a local PacketCluster, from up to four
TelnetClusters, and from the DX Summit internet cluster; real-time analysis and
filtering of this information provides the modern DXer with critical information in a

form that facilitates rapid action - e.g. "show me all spots within 5 kHz of the
transceiver's frequency". PropView’s forecasting functionality was extracted from
the original DXLab, but its ability to assess actual propagation by monitoring the
NCDXF/IARU High Frequency Beacon Network -- directing Commander and
DXView to QSY the transceiver and rotate the antenna to track a specified set of
beacons -- is a recent addition that illustrates the power of interoperation among
an array of applications like the DXLab Suite. Detailed descriptions and
comprehensive online help for each of the above applications are available via
www.dxlabsuite.com .

As each of these constituent applications came to life, Al, K3TKJ provided a web
site to support its distribution, management, and online documentation. I
recruited early adopters from the reflectors, accepting feedback and critique from
anyone willing to offer it. To facilitate rapid response to this feedback, I employed
iterative development, a style of software engineering characterized by frequent
development releases. Every few months, a stable development release is
used to create a full release containing all software and documentation
components. To facilitate rapid evaluation, development releases are lightweight,
containing only those components that have changed since the most recent full
release. Users installing a DXLab application on a PC for the first time must first
install the most recent full release. After installing a full release, one can obtain
all subsequent defect repairs and feature additions by upgrading to the most
recent development release. Instructions for downloading, installing and
upgrading with a matrix of available full releases and development releases are
always available via http://www.dxlabsuite.com/download.htm.

Since these applications interoperated, there was considerable overlap between
their initial user communities. In a step that radically improved communication,
Rich, W3ZJ created the DXLab email reflector at
http://groups.yahoo.com/group/dxlab, providing a common forum that anyone
can join. This reflector has become the primary means by which DXLab
development moves forward -- suggestions are refined, alternatives are
considered, and releases are critiqued; the result is a powerful flow of ideas
whose implementation benefits all participants. Acknowledging the contributions
made by reflector members to date would double the length of this article - and
yet we've barely scratched the surface of what can be done with these
technologies.

